Source code for mimiqcircuits.operations.expectationvalue
#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mimiqcircuits import Operation
from mimiqcircuits.operations.operator import AbstractOperator
import mimiqcircuits as mc
[docs]
class ExpectationValue(Operation):
r"""Operation to compute and store the expectation value of an Operator in a z-register.
An expectation value for a pure state :math:`| \psi \rangle` is defined as:
**Expectation Value for Pure State**
.. math::
\langle O \rangle = \langle \psi | O | \psi \rangle
where :math:`O` is an operator. With respect to a density matrix :math:`\rho`, it's given by:
**Expectation Value for Density Matrix**
.. math::
\langle O \rangle = \mathrm{Tr}(\rho O).
However, when using quantum trajectories to solve noisy circuits, the expectation
value is computed with respect to the pure state of each trajectory.
The argument `op` can be any gate or non-unitary operator.
.. note::
ExpectationValue is currently restricted to one and two qubit operators.
See Also:
:class:`AbstractOperator`, :class:`Gate`
Examples:
In `push!`, the first argument corresponds to the qubit, and the second to the z-register.
>>> from mimiqcircuits import *
>>> ExpectationValue(GateX())
⟨X⟩
>>> c = Circuit()
>>> c.push(ExpectationValue(GateX()), 1, 1)
2-qubit circuit with 1 instructions:
└── ⟨X⟩ @ q[1], z[1]
<BLANKLINE>
>>> c.push(ExpectationValue(SigmaPlus()), 1, 2)
2-qubit circuit with 2 instructions:
├── ⟨X⟩ @ q[1], z[1]
└── ⟨SigmaPlus(1)⟩ @ q[1], z[2]
<BLANKLINE>
"""
_name = "ExpectationValue"
_num_zvars = 1
_num_bits = 0
_num_zregs = 1
_num_cregs = 0
_num_qregs = 1
def __init__(self, op: AbstractOperator):
self.op = op
if not isinstance(op, AbstractOperator):
raise TypeError(f"cannot get Expectation Value of {op.__class__.__name__}.")
if not isinstance(op, mc.PauliString) and not (1 <= op._num_qubits <= 2):
raise ValueError(
"ExpectationValue only supports 1- or 2-qubit operators unless the operator is a PauliString."
)
super().__init__()
self._num_qubits = self.op._num_qubits
self._qregsizes = [self._num_qubits]
self._zregsizes = [1]
[docs]
def opname(self):
return self._name
@property
def qregsizes(self):
return (self._num_qubits,)
@property
def cregsizes(self):
return ()
@property
def zregsizes(self):
return self._zregsizes
[docs]
def inverse(self):
raise NotImplementedError("Cannot inverse an ExpectationValue operation.")
[docs]
def power(self, _):
raise NotImplementedError(
"Cannot elevate an ExpectationValue operation to any power."
)
[docs]
def isunitary(self):
return True
def __str__(self):
return f"⟨{self.op}⟩"
[docs]
def iswrapper(self):
return False
def _decompose(self, circ, qubits, bits, zvars):
return circ.push(self, *qubits, *bits, *zvars)
[docs]
def asciiwidth(self, qubits, bits=[], zvars=[]):
"""Calculate the width for ASCII drawing."""
return len(self.__str__()) + 8
[docs]
def get_operation(self):
return self.op
__all__ = ["ExpectationValue"]