Source code for mimiqcircuits.operations.expectationvalue

#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mimiqcircuits import Operation
from mimiqcircuits.operations.operator import AbstractOperator
import mimiqcircuits as mc


[docs] class ExpectationValue(Operation): r"""Operation to compute and store the expectation value of an Operator in a z-register. An expectation value for a pure state :math:`| \psi \rangle` is defined as: **Expectation Value for Pure State** .. math:: \langle O \rangle = \langle \psi | O | \psi \rangle where :math:`O` is an operator. With respect to a density matrix :math:`\rho`, it's given by: **Expectation Value for Density Matrix** .. math:: \langle O \rangle = \mathrm{Tr}(\rho O). However, when using quantum trajectories to solve noisy circuits, the expectation value is computed with respect to the pure state of each trajectory. The argument `op` can be any gate or non-unitary operator. .. note:: ExpectationValue is currently restricted to one and two qubit operators. See Also: :class:`AbstractOperator`, :class:`Gate` Examples: In `push!`, the first argument corresponds to the qubit, and the second to the z-register. >>> from mimiqcircuits import * >>> ExpectationValue(GateX()) ⟨X⟩ >>> c = Circuit() >>> c.push(ExpectationValue(GateX()), 1, 1) 2-qubit circuit with 1 instructions: └── ⟨X⟩ @ q[1], z[1] <BLANKLINE> >>> c.push(ExpectationValue(SigmaPlus()), 1, 2) 2-qubit circuit with 2 instructions: ├── ⟨X⟩ @ q[1], z[1] └── ⟨SigmaPlus(1)⟩ @ q[1], z[2] <BLANKLINE> """ _name = "ExpectationValue" _num_zvars = 1 _num_bits = 0 _num_zregs = 1 _num_cregs = 0 _num_qregs = 1 def __init__(self, op: AbstractOperator): self.op = op if not isinstance(op, AbstractOperator): raise TypeError(f"cannot get Expectation Value of {op.__class__.__name__}.") if not isinstance(op, mc.PauliString) and not (1 <= op._num_qubits <= 2): raise ValueError( "ExpectationValue only supports 1- or 2-qubit operators unless the operator is a PauliString." ) super().__init__() self._num_qubits = self.op._num_qubits self._qregsizes = [self._num_qubits] self._zregsizes = [1]
[docs] def opname(self): return self._name
@property def qregsizes(self): return (self._num_qubits,) @property def cregsizes(self): return () @property def zregsizes(self): return self._zregsizes
[docs] def inverse(self): raise NotImplementedError("Cannot inverse an ExpectationValue operation.")
[docs] def power(self, _): raise NotImplementedError( "Cannot elevate an ExpectationValue operation to any power." )
[docs] def isunitary(self): return True
def __str__(self): return f"⟨{self.op}⟩"
[docs] def iswrapper(self): return False
def _decompose(self, circ, qubits, bits, zvars): return circ.push(self, *qubits, *bits, *zvars)
[docs] def asciiwidth(self, qubits, bits=[], zvars=[]): """Calculate the width for ASCII drawing.""" return len(self.__str__()) + 8
[docs] def get_operation(self): return self.op
__all__ = ["ExpectationValue"]