Source code for mimiqcircuits.operations.gates.standard.cpauli

#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import mimiqcircuits.operations.control as mctrl
from mimiqcircuits.operations.gates.standard.pauli import GateX, GateY, GateZ
from mimiqcircuits.operations.gates.standard.s import GateS, GateSDG
from mimiqcircuits.operations.gates.standard.hadamard import GateH
import mimiqcircuits as mc


[docs] class GateCX(mctrl.Control): r"""Two qubit Controlled-X gate (or CNOT). By convention, the first qubit is the control and the second is the target **Matrix representation:** .. math:: \operatorname{CX} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateCX(), GateCX().num_controls, GateCX().num_targets (CX, 1, 1) >>> GateCX().matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, 0, 1.0] [0, 0, 1.0, 0] <BLANKLINE> >>> c = Circuit().push(GateCX(), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CX @ q[0], q[1] <BLANKLINE> >>> GateCX().power(2), GateCX().inverse() (CID, CX) >>> GateCX().decompose() 2-qubit circuit with 1 instructions: └── CX @ q[0], q[1] <BLANKLINE> """ def __init__(self): super().__init__(1, GateX()) def _decompose(self, circ, qubits, bits): c, t = qubits circ.push(mc.GateCX(), c, t) return circ
[docs] class GateCY(mctrl.Control): r"""Two qubit Controlled-Y gate. By convention, the first qubit is the control and the second is the target **Matrix representation:** .. math:: \operatorname{CY} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateCY(), GateCY().num_controls, GateCY().num_targets (CY, 1, 1) >>> GateCY().matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, 0, -0.0 - 1.0*I] [0, 0, 0.0 + 1.0*I, 0] <BLANKLINE> >>> c = Circuit().push(GateCY(), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CY @ q[0], q[1] <BLANKLINE> >>> GateCY().power(2), GateCY().inverse() (CID, CY) >>> GateCY().decompose() 2-qubit circuit with 3 instructions: ├── S† @ q[1] ├── CX @ q[0], q[1] └── S @ q[1] <BLANKLINE> """ def __init__(self): super().__init__(1, GateY()) def _decompose(self, circ, qubits, bits): c, t = qubits circ.push(GateSDG(), t) circ.push(GateCX(), c, t) circ.push(GateS(), t) return circ
[docs] class GateCZ(mctrl.Control): r"""Two qubit Controlled-Z gate. By convention, the first qubit is the control and the second is the target **Matrix representation:** .. math:: \operatorname{CZ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateCZ(), GateCZ().num_controls, GateCZ().num_targets (CZ, 1, 1) >>> GateCZ().matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, 1.0, 0] [0, 0, 0, -1.0] <BLANKLINE> >>> c = Circuit().push(GateCZ(), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CZ @ q[0], q[1] <BLANKLINE> >>> GateCZ().power(2), GateCZ().inverse() (CID, CZ) >>> GateCZ().decompose() 2-qubit circuit with 3 instructions: ├── H @ q[1] ├── CX @ q[0], q[1] └── H @ q[1] <BLANKLINE> """ def __init__(self): super().__init__(1, GateZ()) def _decompose(self, circ, qubits, bits): c, t = qubits circ.push(GateH(), t) circ.push(GateCX(), c, t) circ.push(GateH(), t) return circ