#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import mimiqcircuits.operations.control as mctrl
from mimiqcircuits.operations.gates.standard.pauli import GateX, GateY, GateZ
from mimiqcircuits.operations.gates.standard.s import GateS, GateSDG
from mimiqcircuits.operations.gates.standard.hadamard import GateH
import mimiqcircuits as mc
[docs]
class GateCX(mctrl.Control):
r"""Two qubit Controlled-X gate (or CNOT).
By convention, the first qubit is the control and the second is
the target
**Matrix representation:**
.. math::
\operatorname{CX} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateCX(), GateCX().num_controls, GateCX().num_targets
(CX, 1, 1)
>>> GateCX().matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, 0, 1.0]
[0, 0, 1.0, 0]
<BLANKLINE>
>>> c = Circuit().push(GateCX(), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CX @ q[0], q[1]
<BLANKLINE>
>>> GateCX().power(2), GateCX().inverse()
(CID, CX)
>>> GateCX().decompose()
2-qubit circuit with 1 instructions:
└── CX @ q[0], q[1]
<BLANKLINE>
"""
def __init__(self):
super().__init__(1, GateX())
def _decompose(self, circ, qubits, bits):
c, t = qubits
circ.push(mc.GateCX(), c, t)
return circ
[docs]
class GateCY(mctrl.Control):
r"""Two qubit Controlled-Y gate.
By convention, the first qubit is the control and the second is
the target
**Matrix representation:**
.. math::
\operatorname{CY} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateCY(), GateCY().num_controls, GateCY().num_targets
(CY, 1, 1)
>>> GateCY().matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, 0, -0.0 - 1.0*I]
[0, 0, 0.0 + 1.0*I, 0]
<BLANKLINE>
>>> c = Circuit().push(GateCY(), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CY @ q[0], q[1]
<BLANKLINE>
>>> GateCY().power(2), GateCY().inverse()
(CID, CY)
>>> GateCY().decompose()
2-qubit circuit with 3 instructions:
├── S† @ q[1]
├── CX @ q[0], q[1]
└── S @ q[1]
<BLANKLINE>
"""
def __init__(self):
super().__init__(1, GateY())
def _decompose(self, circ, qubits, bits):
c, t = qubits
circ.push(GateSDG(), t)
circ.push(GateCX(), c, t)
circ.push(GateS(), t)
return circ
[docs]
class GateCZ(mctrl.Control):
r"""Two qubit Controlled-Z gate.
By convention, the first qubit is the control and the second is
the target
**Matrix representation:**
.. math::
\operatorname{CZ} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateCZ(), GateCZ().num_controls, GateCZ().num_targets
(CZ, 1, 1)
>>> GateCZ().matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, 1.0, 0]
[0, 0, 0, -1.0]
<BLANKLINE>
>>> c = Circuit().push(GateCZ(), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CZ @ q[0], q[1]
<BLANKLINE>
>>> GateCZ().power(2), GateCZ().inverse()
(CID, CZ)
>>> GateCZ().decompose()
2-qubit circuit with 3 instructions:
├── H @ q[1]
├── CX @ q[0], q[1]
└── H @ q[1]
<BLANKLINE>
"""
def __init__(self):
super().__init__(1, GateZ())
def _decompose(self, circ, qubits, bits):
c, t = qubits
circ.push(GateH(), t)
circ.push(GateCX(), c, t)
circ.push(GateH(), t)
return circ