Source code for mimiqcircuits.operations.gates.standard.crotations

#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import mimiqcircuits.operations.control as mctrl
from mimiqcircuits.operations.gates.standard.cpauli import GateCX
from mimiqcircuits.operations.gates.standard.u import GateU
from mimiqcircuits.operations.gates.standard.phase import GateP
from mimiqcircuits.operations.gates.standard.rotations import GateRX, GateRY, GateRZ
from symengine import pi


[docs] class GateCRX(mctrl.Control): r"""Two qubit Controlled-RX gate. By convention, the first qubit is the control and the second is the target See Also :func:`GateRX`, :func:`GateCRY`, :func:`GateCRZ` **Matrix representation:** .. math:: \operatorname{CRX}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ 0 & 0 & -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} Parameters: theta: The rotation angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> theta = Symbol('theta') >>> GateCRZ(theta), GateCRZ(theta).num_controls, GateCRZ(theta).num_targets, GateCRZ(theta).num_qubits (CRZ(theta), 1, 1, 2) >>> GateCRZ(theta).matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, exp(-1/2*I*theta), 0] [0, 0, 0, exp(1/2*I*theta)] <BLANKLINE> >>> c = Circuit().push(GateCRZ(theta), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CRZ(theta) @ q[0], q[1] <BLANKLINE> >>> GateCRZ(theta).power(2), GateCRZ(theta).inverse() (CRZ(2*theta), CRZ(-theta)) >>> GateCRZ(theta).decompose() 2-qubit circuit with 4 instructions: ├── RZ((1/2)*theta) @ q[1] ├── CX @ q[0], q[1] ├── RZ((-1/2)*theta) @ q[1] └── CX @ q[0], q[1] <BLANKLINE> """ def __init__(self, *args, **kwargs): super().__init__(1, GateRX(*args, **kwargs)) def _decompose(self, circ, qubits, bits): c, t = qubits theta = self.op.theta circ.push(GateP(pi / 2), t) circ.push(GateCX(), c, t) circ.push(GateU(-theta / 2, 0, 0), t) circ.push(GateCX(), c, t) circ.push(GateU(theta / 2, -pi / 2, 0), t) return circ
[docs] class GateCRY(mctrl.Control): r"""Two qubit Controlled-RY gate. By convention, the first qubit is the control and the second is the target See Also :func:`GateRY`, :func:`GateCRX`, :func:`GateCRZ` **Matrix representation:** .. math:: \operatorname{CRY}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ 0 & 0 & \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} Parameters: theta: The rotation angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> theta = Symbol('theta') >>> GateCRY(theta), GateCRY(theta).num_controls, GateCRY(theta).num_targets, GateCRY(theta).num_qubits (CRY(theta), 1, 1, 2) >>> GateCRY(theta).matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, cos((1/2)*theta), -sin((1/2)*theta)] [0, 0, sin((1/2)*theta), cos((1/2)*theta)] <BLANKLINE> >>> c = Circuit().push(GateCRY(theta), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CRY(theta) @ q[0], q[1] <BLANKLINE> >>> GateCRY(theta).power(2), GateCRY(theta).inverse() (CRY(2*theta), CRY(-theta)) >>> GateCRY(theta).decompose() 2-qubit circuit with 4 instructions: ├── RY((1/2)*theta) @ q[1] ├── CX @ q[0], q[1] ├── RY((-1/2)*theta) @ q[1] └── CX @ q[0], q[1] <BLANKLINE> """ def __init__(self, *args, **kwargs): super().__init__(1, GateRY(*args, **kwargs)) def _decompose(self, circ, qubits, bits): c, t = qubits theta = self.op.theta circ.push(GateRY(theta / 2), t) circ.push(GateCX(), c, t) circ.push(GateRY(-theta / 2), t) circ.push(GateCX(), c, t) return circ
[docs] class GateCRZ(mctrl.Control): r"""Two qubit Controlled-RZ gate. By convention, the first qubit is the control and the second is the target See Also :func:`GateRZ`, :func:`GateCRX`, :func:`GateCRY` **Matrix representation:** .. math:: \operatorname{CRZ}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{-i\frac{\lambda}{2}} & 0 \\ 0 & 0 & 0 & e^{i\frac{\lambda}{2}} \end{pmatrix} Parameters: theta: The rotation angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> lmbda = Symbol('lambda') >>> GateCRZ(lmbda), GateCRZ(lmbda).num_controls, GateCRZ(lmbda).num_targets, GateCRZ(lmbda).num_qubits (CRZ(lambda), 1, 1, 2) >>> GateCRZ(lmbda).matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, exp(-1/2*I*lambda), 0] [0, 0, 0, exp(1/2*I*lambda)] <BLANKLINE> >>> c = Circuit().push(GateCRZ(lmbda), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CRZ(lambda) @ q[0], q[1] <BLANKLINE> >>> GateCRZ(lmbda).power(2), GateCRZ(lmbda).inverse() (CRZ(2*lambda), CRZ(-lambda)) >>> GateCRZ(lmbda).decompose() 2-qubit circuit with 4 instructions: ├── RZ((1/2)*lambda) @ q[1] ├── CX @ q[0], q[1] ├── RZ((-1/2)*lambda) @ q[1] └── CX @ q[0], q[1] <BLANKLINE> """ def __init__(self, *args, **kwargs): super().__init__(1, GateRZ(*args, **kwargs)) def _decompose(self, circ, qubits, bits): c, t = qubits lmbda = self.op.lmbda circ.push(GateRZ(lmbda / 2), t) circ.push(GateCX(), c, t) circ.push(GateRZ(-lmbda / 2), t) circ.push(GateCX(), c, t) return circ