#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import mimiqcircuits.operations.control as mctrl
from mimiqcircuits.operations.gates.standard.cpauli import GateCX
from mimiqcircuits.operations.gates.standard.u import GateU
from mimiqcircuits.operations.gates.standard.phase import GateP
from mimiqcircuits.operations.gates.standard.rotations import GateRX, GateRY, GateRZ
from symengine import pi
[docs]
class GateCRX(mctrl.Control):
r"""Two qubit Controlled-RX gate.
By convention, the first qubit is the control and the second is
the target
See Also :func:`GateRX`, :func:`GateCRY`, :func:`GateCRZ`
**Matrix representation:**
.. math::
\operatorname{CRX}(\theta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\
0 & 0 & -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{pmatrix}
Parameters:
theta: The rotation angle in radians.
Examples:
>>> from mimiqcircuits import *
>>> from symengine import *
>>> theta = Symbol('theta')
>>> GateCRZ(theta), GateCRZ(theta).num_controls, GateCRZ(theta).num_targets, GateCRZ(theta).num_qubits
(CRZ(theta), 1, 1, 2)
>>> GateCRZ(theta).matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, exp(-1/2*I*theta), 0]
[0, 0, 0, exp(1/2*I*theta)]
<BLANKLINE>
>>> c = Circuit().push(GateCRZ(theta), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CRZ(theta) @ q[0], q[1]
<BLANKLINE>
>>> GateCRZ(theta).power(2), GateCRZ(theta).inverse()
(CRZ(2*theta), CRZ(-theta))
>>> GateCRZ(theta).decompose()
2-qubit circuit with 4 instructions:
├── RZ((1/2)*theta) @ q[1]
├── CX @ q[0], q[1]
├── RZ((-1/2)*theta) @ q[1]
└── CX @ q[0], q[1]
<BLANKLINE>
"""
def __init__(self, *args, **kwargs):
super().__init__(1, GateRX(*args, **kwargs))
def _decompose(self, circ, qubits, bits):
c, t = qubits
theta = self.op.theta
circ.push(GateP(pi / 2), t)
circ.push(GateCX(), c, t)
circ.push(GateU(-theta / 2, 0, 0), t)
circ.push(GateCX(), c, t)
circ.push(GateU(theta / 2, -pi / 2, 0), t)
return circ
[docs]
class GateCRY(mctrl.Control):
r"""Two qubit Controlled-RY gate.
By convention, the first qubit is the control and the second is
the target
See Also :func:`GateRY`, :func:`GateCRX`, :func:`GateCRZ`
**Matrix representation:**
.. math::
\operatorname{CRY}(\theta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\
0 & 0 & \sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{pmatrix}
Parameters:
theta: The rotation angle in radians.
Examples:
>>> from mimiqcircuits import *
>>> from symengine import *
>>> theta = Symbol('theta')
>>> GateCRY(theta), GateCRY(theta).num_controls, GateCRY(theta).num_targets, GateCRY(theta).num_qubits
(CRY(theta), 1, 1, 2)
>>> GateCRY(theta).matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, cos((1/2)*theta), -sin((1/2)*theta)]
[0, 0, sin((1/2)*theta), cos((1/2)*theta)]
<BLANKLINE>
>>> c = Circuit().push(GateCRY(theta), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CRY(theta) @ q[0], q[1]
<BLANKLINE>
>>> GateCRY(theta).power(2), GateCRY(theta).inverse()
(CRY(2*theta), CRY(-theta))
>>> GateCRY(theta).decompose()
2-qubit circuit with 4 instructions:
├── RY((1/2)*theta) @ q[1]
├── CX @ q[0], q[1]
├── RY((-1/2)*theta) @ q[1]
└── CX @ q[0], q[1]
<BLANKLINE>
"""
def __init__(self, *args, **kwargs):
super().__init__(1, GateRY(*args, **kwargs))
def _decompose(self, circ, qubits, bits):
c, t = qubits
theta = self.op.theta
circ.push(GateRY(theta / 2), t)
circ.push(GateCX(), c, t)
circ.push(GateRY(-theta / 2), t)
circ.push(GateCX(), c, t)
return circ
[docs]
class GateCRZ(mctrl.Control):
r"""Two qubit Controlled-RZ gate.
By convention, the first qubit is the control and the second is
the target
See Also :func:`GateRZ`, :func:`GateCRX`, :func:`GateCRY`
**Matrix representation:**
.. math::
\operatorname{CRZ}(\theta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{-i\frac{\lambda}{2}} & 0 \\
0 & 0 & 0 & e^{i\frac{\lambda}{2}}
\end{pmatrix}
Parameters:
theta: The rotation angle in radians.
Examples:
>>> from mimiqcircuits import *
>>> from symengine import *
>>> lmbda = Symbol('lambda')
>>> GateCRZ(lmbda), GateCRZ(lmbda).num_controls, GateCRZ(lmbda).num_targets, GateCRZ(lmbda).num_qubits
(CRZ(lambda), 1, 1, 2)
>>> GateCRZ(lmbda).matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, exp(-1/2*I*lambda), 0]
[0, 0, 0, exp(1/2*I*lambda)]
<BLANKLINE>
>>> c = Circuit().push(GateCRZ(lmbda), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CRZ(lambda) @ q[0], q[1]
<BLANKLINE>
>>> GateCRZ(lmbda).power(2), GateCRZ(lmbda).inverse()
(CRZ(2*lambda), CRZ(-lambda))
>>> GateCRZ(lmbda).decompose()
2-qubit circuit with 4 instructions:
├── RZ((1/2)*lambda) @ q[1]
├── CX @ q[0], q[1]
├── RZ((-1/2)*lambda) @ q[1]
└── CX @ q[0], q[1]
<BLANKLINE>
"""
def __init__(self, *args, **kwargs):
super().__init__(1, GateRZ(*args, **kwargs))
def _decompose(self, circ, qubits, bits):
c, t = qubits
lmbda = self.op.lmbda
circ.push(GateRZ(lmbda / 2), t)
circ.push(GateCX(), c, t)
circ.push(GateRZ(-lmbda / 2), t)
circ.push(GateCX(), c, t)
return circ