#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mimiqcircuits.operations.gates.standard.s import GateS, GateSDG
from mimiqcircuits.operations.gates.standard.cphase import GateCP
import mimiqcircuits.operations.control as mctrl
from symengine import pi
[docs]
class GateCS(mctrl.Control):
r"""Two qubit Controlled-S gate.
By convention, the first qubit is the control and the second is
the target
See Also :func:`GateS`
**Matrix representation:**:
.. math::
\operatorname{CS} =\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateCS(), GateCS().num_controls, GateCS().num_targets, GateCS().num_qubits
(CS, 1, 1, 2)
>>> GateCS().matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, 1.0, 0]
[0, 0, 0, 0.0 + 1.0*I]
<BLANKLINE>
>>> c = Circuit().push(GateCS(), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CS @ q[0], q[1]
<BLANKLINE>
>>> GateCS().power(2), GateCS().inverse()
(CZ, CS†)
>>> GateCS().decompose()
2-qubit circuit with 1 instructions:
└── CP((1/2)*pi) @ q[0], q[1]
<BLANKLINE>
"""
def __init__(self):
super().__init__(1, GateS())
def _decompose(self, circ, qubits, bits, zvars):
a, b = qubits
circ.push(GateCP(pi / 2), a, b)
return circ
[docs]
class GateCSDG(mctrl.Control):
r"""Adjoint of two qubit Controlled-S gate.
By convention, the first qubit is the control and the second is
the target
**Matrix representation:**
.. math::
\operatorname{CS}^{\dagger} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -i
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateCSDG(), GateCSDG().num_controls, GateCSDG().num_targets, GateCSDG().num_qubits
(CS†, 1, 1, 2)
>>> GateCSDG().matrix()
[1.0, 0, 0, 0]
[0, 1.0, 0, 0]
[0, 0, 1.0, 0]
[0, 0, 0, 6.12323399573677e-17 - 1.0*I]
<BLANKLINE>
>>> c = Circuit().push(GateCSDG(), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── CS† @ q[0], q[1]
<BLANKLINE>
>>> GateCSDG().power(2), GateCSDG().inverse()
(C(S†**2), CS)
>>> GateCSDG().decompose()
2-qubit circuit with 1 instructions:
└── CP((-1/2)*pi) @ q[0], q[1]
<BLANKLINE>
"""
def __init__(self):
super().__init__(1, GateSDG())
def _decompose(self, circ, qubits, bits, zvars):
a, b = range(self.num_qubits)
circ.push(GateCP(-pi / 2), a, b)
return circ