Source code for mimiqcircuits.operations.gates.standard.csx

#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from mimiqcircuits.operations.gates.standard.sx import GateSX, GateSXDG
from mimiqcircuits.operations.gates.standard.hadamard import GateH
from mimiqcircuits.operations.gates.standard.deprecated import GateU1
import mimiqcircuits.operations.control as mctrl
from symengine import pi
import mimiqcircuits as mc


[docs] class GateCSX(mctrl.Control): r"""Two qubit Controled-SX gate. By convention, the first qubit is the control and second one is the targets. **Matrix representation:** .. math:: \operatorname{CSX} =\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1+i}{2} & \frac{1-i}{2} \\ 0 & 0 & \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateCSX(), GateCSX().num_controls, GateCSX().num_targets, GateCSX().num_qubits (CSX, 1, 1, 2) >>> GateCSX().matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, 0.5 + 0.5*I, 0.5 - 0.5*I] [0, 0, 0.5 - 0.5*I, 0.5 + 0.5*I] <BLANKLINE> >>> c = Circuit().push(GateCSX(), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CSX @ q[0], q[1] <BLANKLINE> >>> GateCSX().power(2), GateCSX().inverse() (CX, CSX†) >>> GateCSX().decompose() 2-qubit circuit with 3 instructions: ├── H @ q[1] ├── CU1((1/2)*pi) @ q[0], q[1] └── H @ q[1] <BLANKLINE> """ def __init__(self): super().__init__(1, GateSX()) def _decompose(self, circ, qubits, bits): a, b = qubits circ.push(GateH(), b) circ.push(GateU1(pi / 2).control(1), a, b) circ.push(GateH(), b) return circ
[docs] class GateCSXDG(mctrl.Control): r"""Two qubit :math:`{CSX}^\dagger` gate. **Matrix representation:** .. math:: \operatorname{CSX}^{\dagger} =\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1-i}{2} & \frac{1+i}{2} \\ 0 & 0 & \frac{1+i}{2} & \frac{1-i}{2} \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateCSXDG(), GateCSXDG().num_controls, GateCSXDG().num_targets, GateCSXDG().num_qubits (CSX†, 1, 1, 2) >>> GateCSXDG().matrix() [1.0, 0, 0, 0] [0, 1.0, 0, 0] [0, 0, 0.5 - 0.5*I, 0.5 + 0.5*I] [0, 0, 0.5 + 0.5*I, 0.5 - 0.5*I] <BLANKLINE> >>> c = Circuit().push(GateCSXDG(), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── CSX† @ q[0], q[1] <BLANKLINE> >>> GateCSXDG().power(2), GateCSXDG().inverse() (C(SX†**2), CSX) >>> GateCSXDG().decompose() 2-qubit circuit with 3 instructions: ├── H @ q[1] ├── CU1((-1/2)*pi) @ q[0], q[1] └── H @ q[1] <BLANKLINE> """ def __init__(self): super().__init__(1, GateSXDG()) def _decompose(self, circ, qubits, bits): a, b = range(self.num_qubits) circ.push(GateH(), b) circ.push(GateU1(-pi / 2).control(1), a, b) circ.push(GateH(), b) return circ