#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import mimiqcircuits.operations.gates.gate as mcg
from mimiqcircuits.operations.gates.standard.cpauli import GateCX
from symengine import Matrix
import mimiqcircuits as mc
[docs]
class GateDCX(mcg.Gate):
r"""Two qubit double-CNOT gate.
A two qubit Clifford gate consisting of two back-to-back CNOTs with
alternate controls.
**Matrix representation:**
.. math::
\operatorname{DCX} =\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateDCX()
DCX
>>> GateDCX().matrix()
[1.0, 0, 0, 0]
[0, 0, 1.0, 0]
[0, 0, 0, 1.0]
[0, 1.0, 0, 0]
<BLANKLINE>
>>> c = Circuit().push(GateDCX(), 0, 1)
>>> c
2-qubit circuit with 1 instructions:
└── DCX @ q[0,1]
<BLANKLINE>
>>> GateDCX().power(2), GateDCX().inverse()
(DCX†, DCX†)
>>> GateDCX().decompose()
2-qubit circuit with 2 instructions:
├── CX @ q[0], q[1]
└── CX @ q[1], q[0]
<BLANKLINE>
"""
_num_qubits = 2
_qregsizes = [2]
_name = "DCX"
def _matrix(self):
return Matrix(
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
[0.0, 1.0, 0.0, 0.0],
]
)
def _power(self, p):
pmod = p % 3
if pmod == 1:
return self
if pmod == 2:
return mc.Inverse(self)
if pmod == 0:
return mc.GateID().parallel(2)
def _decompose(self, circ, qubits, bits, zvars):
a, b = qubits
circ.push(GateCX(), a, b)
circ.push(GateCX(), b, a)
return circ