Source code for mimiqcircuits.operations.gates.standard.deprecated

#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import mimiqcircuits.operations.gates.gate as mcg
from mimiqcircuits.operations.gates.standard.u import GateU
from mimiqcircuits.matrices import pmatrix, umatrix
from symengine import pi


[docs] class GateU1(mcg.Gate): r"""Single qubit generic unitary gate :math:`{U_1}`. Equivalent to :func:`GateP` **Matrix representation:** .. math:: \operatorname{U1}(\lambda) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\lambda} \end{pmatrix} Parameters: lambda (float): Euler angle 3 in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> lmbda = Symbol('lambda') >>> GateU1(lmbda) U1(lambda) >>> GateU1(lmbda).matrix() [1.0, 0] [0, exp(I*lambda)] <BLANKLINE> >>> c = Circuit().push(GateU1(lmbda), 0) >>> c 1-qubit circuit with 1 instructions: └── U1(lambda) @ q[0] <BLANKLINE> >>> GateU1(lmbda).power(2), GateU1(lmbda).inverse() (U1(2*lambda), U1(-lambda)) >>> GateU1(lmbda).decompose() 1-qubit circuit with 1 instructions: └── U(0, 0, lambda, 0.0) @ q[0] <BLANKLINE> """ _name = "U1" _num_qubits = 1 _qregsizes = [1] _parnames = ("lmbda",) def __init__(self, lmbda): self.lmbda = lmbda def _matrix(self): return pmatrix(self.lmbda)
[docs] def inverse(self): return GateU1(-self.lmbda)
def _power(self, pwr): return GateU1(pwr * self.lmbda) def _decompose(self, circ, qubits, bits): q = qubits[0] circ.push(GateU(0, 0, self.lmbda), q) return circ
[docs] class GateU2(mcg.Gate): r"""Single qubit generic unitary gate :math:`{U_2}`. **Matrix representation:** .. math:: \operatorname{U2}(\phi,\lambda) = \frac{1}{\sqrt{2}}e^{-(\phi+\lambda)/2}\begin{pmatrix} 1 & -e^{i\lambda} \\ e^{i\phi} & e^{i(\phi+\lambda)} \end{pmatrix} Parameters: phi: Euler angle in radians. lambda: Euler angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> phi, lmbda = symbols('phi lambda') >>> GateU2(phi, lmbda) U2(phi, lambda) >>> GateU2(phi, lmbda).matrix() [0.707106781186548, -0.707106781186548*exp(I*lambda)] [0.707106781186548*exp(I*phi), 0.707106781186548*exp(I*(lambda + phi))] <BLANKLINE> >>> c = Circuit().push(GateU2(phi, lmbda), 0) >>> c 1-qubit circuit with 1 instructions: └── U2(phi, lambda) @ q[0] <BLANKLINE> >>> GateU2(phi, lmbda).power(2), GateU2(phi, lmbda).inverse() (U2(phi, lambda)**2, U2(-lambda - pi, -phi + pi)) >>> GateU2(phi, lmbda).decompose() 1-qubit circuit with 1 instructions: └── U((1/2)*pi, phi, lambda, 0.0) @ q[0] <BLANKLINE> """ _name = "U2" _num_qubits = 1 _qregsizes = [1] _parnames = ("phi", "lmbda") def __init__(self, phi, lmbda): self.phi = phi self.lmbda = lmbda def _matrix(self): return umatrix(pi / 2, self.phi, self.lmbda)
[docs] def inverse(self): return GateU2(-self.lmbda - pi, -self.phi + pi)
def _decompose(self, circ, qubits, bits): q = qubits[0] circ.push(GateU(pi / 2, self.phi, self.lmbda), q) return circ
[docs] class GateU3(mcg.Gate): r"""Single qubit generic unitary gate :math:`{U_3}`. This gate is equivalent to :func:`GateU` up to a global phase, :math:`\operatorname{U3}(\theta,\phi,\lambda) = e^{-i(\phi + \lambda + \theta)/2} \operatorname{U}(\theta,\phi,\lambda)` **Matrix representation:** .. math:: \operatorname{U3}(\theta,\phi,\lambda) = \frac{1}{2}e^{-i(\phi + \lambda + \theta)/2} \begin{pmatrix} 1 + e^{i\theta} & -i e^{i\lambda}(1 - e^{i\theta}) \\ i e^{i\phi}(1 - e^{i\theta}) & e^{i(\phi + \lambda)}(1 + e^{i\theta}) \end{pmatrix} Parameters: theta: Euler angle 1 in radians. phi: Euler angle 2 in radians. lambda: Euler angle 3 in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> theta, phi, lmbda = symbols('theta phi lambda') >>> GateU3(theta, phi, lmbda) U3(theta, phi, lambda) >>> GateU3(theta, phi, lmbda).matrix() [1.0*cos((1/2)*theta), -exp(I*lambda)*sin((1/2)*theta)] [exp(I*phi)*sin((1/2)*theta), exp(I*(lambda + phi))*cos((1/2)*theta)] <BLANKLINE> >>> c = Circuit().push(GateU3(theta, phi, lmbda), 0) >>> GateU3(theta, phi, lmbda).power(2), GateU3(theta, phi, lmbda).inverse() (U3(theta, phi, lambda)**2, U3(-theta, -lambda, -phi)) >>> GateU3(theta, phi, lmbda).decompose() 1-qubit circuit with 1 instructions: └── U(theta, phi, lambda, 0.0) @ q[0] <BLANKLINE> """ _name = "U3" _num_qubits = 1 _qregsizes = [1] _parnames = ("theta", "phi", "lmbda") def __init__(self, theta, phi, lmbda): self.theta = theta self.phi = phi self.lmbda = lmbda def _matrix(self): return umatrix(self.theta, self.phi, self.lmbda)
[docs] def inverse(self): return GateU3(-self.theta, -self.lmbda, -self.phi)
def _decompose(self, circ, qubits, bits): q = qubits[0] circ.push(GateU(self.theta, self.phi, self.lmbda), q) return circ