Source code for mimiqcircuits.operations.gates.standard.ecr

#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import mimiqcircuits.operations.gates.gate as mcg
from mimiqcircuits.operations.gates.standard.interactions import GateRZX
from mimiqcircuits.operations.utils import power_idempotent
from mimiqcircuits.operations.gates.standard.pauli import GateX
from symengine import sqrt, I, pi, Matrix


[docs] class GateECR(mcg.Gate): r"""Two qubit ECR (echo) gate. **Matrix representation:** .. math:: \operatorname{ECR} =\begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-i}{\sqrt{2}} & 0 \\ 0 & \frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateECR() ECR >>> GateECR().matrix() [0, 0, 0.707106781186548, 0.0 + 0.707106781186548*I] [0, 0, 0.0 + 0.707106781186548*I, 0.707106781186548] [0.707106781186548, -0.0 - 0.707106781186548*I, 0, 0] [-0.0 - 0.707106781186548*I, 0.707106781186548, 0, 0] <BLANKLINE> >>> c = Circuit().push(GateECR(), 0, 1) >>> c 2-qubit circuit with 1 instructions: └── ECR @ q[0,1] <BLANKLINE> >>> GateECR().power(2), GateECR().inverse() (⨷ ² ID, ECR) >>> GateECR().decompose() 2-qubit circuit with 3 instructions: ├── RZX((1/4)*pi) @ q[0,1] ├── X @ q[0] └── RZX((-1/4)*pi) @ q[0,1] <BLANKLINE> """ _name = "ECR" _num_qubits = 2 _qregsizes = [2] def _matrix(self): return Matrix( [[0, 0, 1, I], [0, 0, I, 1], [1, -I, 0, 0], [-I, 1, 0, 0]] ) / sqrt(2)
[docs] def inverse(self): return self
def _power(self, p): return power_idempotent(self, p) def _decompose(self, circ, qubits, bits, zvars): a, b = qubits circ.push(GateRZX(pi / 4), a, b) circ.push(GateX(), a) circ.push(GateRZX(-pi / 4), a, b) return circ