Source code for mimiqcircuits.operations.gates.standard.rotations

#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import mimiqcircuits.operations.gates.gate as mcg
from mimiqcircuits.operations.gates.standard.u import GateU
from mimiqcircuits.operations.gates.standard.deprecated import GateU3
from mimiqcircuits.operations.utils import control_one_defined
import mimiqcircuits as mc
from symengine import pi, Matrix, cos, sin, I, exp


[docs] class GateRX(mcg.Gate): r"""Single qubit Rotation gate around the axis :math:`\hat{x}` **Matrix representation:** .. math:: \operatorname{RX}(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} Parameters: theta: Rotation angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> theta = Symbol('theta') >>> GateRX(theta) RX(theta) >>> GateRX(theta).matrix() [cos((1/2)*theta), -I*sin((1/2)*theta)] [-I*sin((1/2)*theta), cos((1/2)*theta)] <BLANKLINE> >>> c = Circuit().push(GateRX(theta), 0) >>> c 1-qubit circuit with 1 instructions: └── RX(theta) @ q[0] <BLANKLINE> >>> GateRX(theta).power(2), GateRX(theta).inverse() (RX(2*theta), RX(-theta)) >>> GateRX(theta).decompose() 1-qubit circuit with 1 instructions: └── U(theta, (-1/2)*pi, (1/2)*pi, 0.0) @ q[0] <BLANKLINE> """ _name = "RX" _num_qubits = 1 _qregsizes = [1] _parnames = ("theta",) def __init__(self, theta): self.theta = theta def _matrix(self): return Matrix( [ [cos(self.theta / 2), -I * sin(self.theta / 2)], [-I * sin(self.theta / 2), cos(self.theta / 2)], ] )
[docs] def inverse(self): return GateRX(-self.theta)
def _power(self, p): return GateRX(self.theta * p)
[docs] def isidentity(self): if self.theta == 0: return True return False
def _control(self, n): return control_one_defined(n, self, mc.GateCRX(self.theta)) def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(GateU(self.theta, -pi / 2, pi / 2), q) return circ
[docs] class GateRY(mcg.Gate): r"""Single qubit Rotation gate around the axis :math:`\hat{y}` **Matrix representation:** .. math:: \operatorname{RY}(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} Parameters: theta (float): Rotation angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> theta = Symbol('theta') >>> GateRY(theta) RY(theta) >>> GateRY(theta).matrix() [cos((1/2)*theta), -sin((1/2)*theta)] [sin((1/2)*theta), cos((1/2)*theta)] <BLANKLINE> >>> c = Circuit().push(GateRY(theta), 0) >>> c 1-qubit circuit with 1 instructions: └── RY(theta) @ q[0] <BLANKLINE> >>> GateRY(theta).power(2), GateRY(theta).inverse() (RY(2*theta), RY(-theta)) >>> GateRY(theta).decompose() 1-qubit circuit with 1 instructions: └── U(theta, 0, 0, 0.0) @ q[0] <BLANKLINE> """ _name = "RY" _num_qubits = 1 _qregsizes = [1] _parnames = ("theta",) def __init__(self, theta): self.theta = theta def _matrix(self): return Matrix( [ [cos(self.theta / 2), -sin(self.theta / 2)], [sin(self.theta / 2), cos(self.theta / 2)], ] )
[docs] def inverse(self): return GateRY(-self.theta)
def _power(self, p): return GateRY(self.theta * p)
[docs] def isidentity(self): if self.theta == 0: return True return False
def _control(self, n): control_one_defined(n, self, mc.GateCRY(self.theta)) def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(GateU(self.theta, 0, 0), q) return circ
[docs] class GateRZ(mcg.Gate): r"""Single qubit Rotation gate around the axis :math:`\hat{z}` **Matrix representation:** .. math:: \operatorname{RZ}(\lambda) = \begin{pmatrix} e^{-i\frac{\lambda}{2}} & 0 \\ 0 & e^{i\frac{\lambda}{2}} \end{pmatrix} Parameters: lambda: Rotation angle in radians. Examples: >>> from mimiqcircuits import * >>> from symengine import * >>> lmbda = Symbol('lambda') >>> GateRZ(lmbda) RZ(lambda) >>> GateRZ(lmbda).matrix() [exp(-1/2*I*lambda), 0] [0, exp(1/2*I*lambda)] <BLANKLINE> >>> c = Circuit().push(GateRZ(lmbda), 0) >>> c 1-qubit circuit with 1 instructions: └── RZ(lambda) @ q[0] <BLANKLINE> >>> GateRZ(lmbda).power(2), GateRZ(lmbda).inverse() (RZ(2*lambda), RZ(-lambda)) >>> GateRZ(lmbda).decompose() 1-qubit circuit with 1 instructions: └── U(0, 0, lambda, (-1/2)*lambda) @ q[0] <BLANKLINE> """ _name = "RZ" _num_qubits = 1 _qregsizes = [1] _parnames = ("lmbda",) def __init__(self, lmbda): self.lmbda = lmbda def _matrix(self): return Matrix([[exp(-I * self.lmbda / 2), 0], [0, exp(I * self.lmbda / 2)]])
[docs] def inverse(self): return GateRZ(-self.lmbda)
def _power(self, p): return GateRZ(self.lmbda * p)
[docs] def isidentity(self): if self.lmbda == 0: return True return False
def _control(self, n): return control_one_defined(n, self, mc.GateCRZ(self.lmbda)) def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(GateU(0, 0, self.lmbda, -self.lmbda / 2), q) return circ
[docs] class GateR(mcg.Gate): r"""Single qubit Rotation gate around the axis :math:`\cos(\phi)\hat{x} + \sin(\phi)\hat{y}`. **Matrix representation:** .. math:: \operatorname R(\theta,\phi) = \begin{pmatrix} \cos \frac{\theta}{2} & -i e^{-i\phi} \sin \frac{\theta}{2} \\ -i e^{i \phi} \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} Parameters: theta (float): The rotation angle in radians. phi (float): The axis of rotation in radians. Example: >>> from mimiqcircuits import * >>> from symengine import * >>> theta, phi = symbols('theta phi') >>> GateR(theta, phi) R(theta, phi) >>> GateR(theta, phi).matrix() [cos((1/2)*theta), -I*exp(-I*phi)*sin((1/2)*theta)] [-I*exp(I*phi)*sin((1/2)*theta), cos((1/2)*theta)] <BLANKLINE> >>> c = Circuit().push(GateR(theta, phi), 0) >>> GateR(theta, phi).power(2), GateR(theta, phi).inverse() (R(2*theta, phi), R(-theta, phi)) >>> GateR(theta, phi).decompose() 1-qubit circuit with 1 instructions: └── U3(theta, phi + (-1/2)*pi, -phi + (1/2)*pi) @ q[0] <BLANKLINE> """ _name = "R" _num_qubits = 1 _qregsizes = [1] _parnames = ("theta", "phi") def __init__(self, theta, phi): self.theta = theta self.phi = phi def _matrix(self): return Matrix( [ [cos(self.theta / 2), -I * exp(-I * self.phi) * sin(self.theta / 2)], [-I * exp(I * self.phi) * sin(self.theta / 2), cos(self.theta / 2)], ] )
[docs] def inverse(self): return GateR(-self.theta, self.phi)
def _power(self, p): return GateR(self.theta * p, self.phi) def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(GateU3(self.theta, self.phi - pi / 2, -self.phi + pi / 2), q) return circ