Source code for mimiqcircuits.operations.gates.standard.sx

#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2023-2025 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from symengine import pi

import mimiqcircuits as mc


[docs] def GateSX(): r"""Single qubit :math:`\sqrt{X}` gate. **Matrix representation:** .. math:: \sqrt{\operatorname{X}} = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i\\ \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateSX() SX >>> GateSX().matrix() [0.5 + 0.5*I, 0.5 - 0.5*I] [0.5 - 0.5*I, 0.5 + 0.5*I] <BLANKLINE> >>> c = Circuit().push(GateSX(), 0) >>> c 1-qubit circuit with 1 instructions: └── SX @ q[0] <BLANKLINE> >>> GateSX().power(2), GateSX().inverse() (X, SX†) >>> GateSX().decompose() 1-qubit circuit with 4 instructions: ├── S† @ q[0] ├── H @ q[0] ├── S† @ q[0] └── U(0, 0, 0, (1/4)*pi) @ q[0] <BLANKLINE> """ return mc.Power(mc.GateX(), 1 / 2)
mc.register_power_alias(mc.GateX, 1 / 2, "SX") @mc.register_power_decomposition(mc.GateX, 1 / 2) def _decompose_gatesx(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(mc.GateSDG(), q) circ.push(mc.GateH(), q) circ.push(mc.GateSDG(), q) circ.push(mc.GateU(0, 0, 0, pi / 4), q) return circ
[docs] def GateSXDG(): r"""Single qubit :math:`\sqrt{X}^\dagger` gate (conjugate transpose of the :math:`\sqrt{X}` gate). **Matrix representation:** .. math:: \sqrt{\operatorname{X}}^\dagger = \frac{1}{2} \begin{pmatrix} 1-i & 1+i \\ 1+i & 1-i\\ \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateSXDG() SX† >>> GateSXDG().matrix() [0.5 - 0.5*I, 0.5 + 0.5*I] [0.5 + 0.5*I, 0.5 - 0.5*I] <BLANKLINE> >>> c = Circuit().push(GateSXDG(), 0) >>> c 1-qubit circuit with 1 instructions: └── SX† @ q[0] <BLANKLINE> >>> GateSXDG().power(2), GateSXDG().inverse() ((SX†)**2, SX) >>> GateSXDG().decompose() 1-qubit circuit with 4 instructions: ├── S @ q[0] ├── H @ q[0] ├── S @ q[0] └── U(0, 0, 0, (-1/4)*pi) @ q[0] <BLANKLINE> """ return mc.Inverse(GateSX())
@mc.register_inverse_decomposition((mc.Power, mc.GateX, 1 / 2)) def _decompose_gatesxdg(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(mc.GateS(), q) circ.push(mc.GateH(), q) circ.push(mc.GateS(), q) circ.push(mc.GateU(0, 0, 0, -pi / 4), q) return circ