Source code for mimiqcircuits.operations.gates.standard.sy

#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from mimiqcircuits.operations.utils import control_one_defined
import mimiqcircuits as mc
from symengine import pi


[docs] class GateSY(mc.Power): r"""Single qubit :math:`\sqrt{Y}` gate. See Also: :class:`GateSYDG`, :class:`GateY`, :class:`Power` **Matrix Representation** .. math:: \operatorname{SY} = \sqrt{\operatorname{Y}} = \frac{1}{2} \begin{pmatrix} 1+i & -1-i \\ 1+i & 1+i \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateSY() SY >>> GateSY().matrix() [0.5 + 0.5*I, -0.5 - 0.5*I] [0.5 + 0.5*I, 0.5 + 0.5*I] <BLANKLINE> >>> c = Circuit() >>> c.push(GateSY(), 1) 2-qubit circuit with 1 instructions: └── SY @ q[1] <BLANKLINE> >>> c.push(GateSY(), 2) 3-qubit circuit with 2 instructions: ├── SY @ q[1] └── SY @ q[2] <BLANKLINE> >>> power(GateSY(), 2) Y**1.0 **Decomposition** >>> GateSY().decompose() 1-qubit circuit with 4 instructions: ├── S @ q[0] ├── S @ q[0] ├── H @ q[0] └── U(0, 0, 0, (1/4)*pi) @ q[0] <BLANKLINE> """ _name = "SY" def __init__(self): super().__init__(mc.GateY(), 1 / 2)
[docs] def inverse(self): return GateSYDG()
[docs] def isopalias(self): return True
def _control(self, n): return control_one_defined(n, self, mc.Control(1, GateSY())) def _power(self, p): return mc.Power(self, p) def __str__(self): return f"{self.name}" def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(mc.GateS(), q) circ.push(mc.GateS(), q) circ.push(mc.GateH(), q) circ.push(mc.GateU(0, 0, 0, pi / 4), q) return circ
[docs] class GateSYDG(mc.Inverse): r"""Single qubit :math:`\sqrt{Y}^\dagger` gate (conjugate transpose of the :math:`\sqrt{Y}` gate). See Also: :class:`GateSY`, :class:`GateY`, :class:`Power`, :class:`Inverse` **Matrix Representation** .. math:: \operatorname{SYDG} = \sqrt{\operatorname{Y}}^\dagger = \frac{1}{2} \begin{pmatrix} 1-i & 1-i \\ -1+i & 1-i \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateSYDG() SY† >>> GateSYDG().matrix() [0.5 - 0.5*I, 0.5 - 0.5*I] [-0.5 + 0.5*I, 0.5 - 0.5*I] <BLANKLINE> >>> c = Circuit() >>> c.push(GateSYDG(), 1) 2-qubit circuit with 1 instructions: └── SY† @ q[1] <BLANKLINE> >>> c.push(GateSYDG(), 2) 3-qubit circuit with 2 instructions: ├── SY† @ q[1] └── SY† @ q[2] <BLANKLINE> >>> power(GateSYDG(), 2) SY†**2 >>> inverse(GateSYDG()) SY """ def __init__(self): super().__init__(GateSY())
[docs] def inverse(self): return GateSY()
[docs] def isopalias(self): return True
def _power(self, p): return mc.Power(self, p) def _control(self, n): return control_one_defined(n, self, mc.Control(1, GateSYDG())) def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(mc.GateU(0, 0, 0, -pi / 4), q) circ.push(mc.GateH(), q) circ.push(mc.GateSDG(), q) circ.push(mc.GateSDG(), q) return circ