Source code for mimiqcircuits.operations.gates.standard.t
#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mimiqcircuits.operations.power import Power
from mimiqcircuits.operations.inverse import Inverse
from mimiqcircuits.operations.gates.standard.s import GateS
from mimiqcircuits.operations.gates.standard.u import GateU
from symengine import pi
import mimiqcircuits as mc
[docs]
class GateT(Power):
r""" Single qubit T gate.
**Matrix representation:**
.. math::
\operatorname{T} = \begin{pmatrix}
1 & 0 \\
0 & \exp\left(\frac{i\pi}{4}\right)
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateT()
T
>>> GateT().matrix()
[1.0, 0]
[0, 0.707106781186548 + 0.707106781186548*I]
<BLANKLINE>
>>> c = Circuit().push(GateT(), 0)
>>> c
1-qubit circuit with 1 instructions:
└── T @ q[0]
<BLANKLINE>
>>> GateT().power(2), GateT().inverse()
(S, T†)
>>> GateT().decompose()
1-qubit circuit with 1 instructions:
└── U(0, 0, (1/4)*pi, 0.0) @ q[0]
<BLANKLINE>
"""
_name = "T"
def __init__(self):
super().__init__(GateS(), 1 / 2)
[docs]
def isopalias(self):
return True
[docs]
def inverse(self):
return GateTDG()
def _power(self, p):
# T^2 * T^2 * T^2 * T^2 = S^2 * S^2 = Z * Z = ID
if p % 8 == 0:
return mc.GateID()
# T^(8n + 1) = T
if p % 8 == 1:
return GateT()
# T^(8n - 1) = T†
if p % 8 == 7:
return GateTDG()
# T^(4n) = Z^n
if p % 4 == 0:
return mc.GateZ().power(p / 4)
# T^(2n) = S^n
if p % 2 == 0:
return mc.GateS().power(p / 2)
return mc.Power(self, p)
def __str__(self):
return f"{self.name}"
def _decompose(self, circ, qubits, bits, zvars):
q = qubits[0]
circ.push(GateU(0, 0, pi / 4), q)
return circ
[docs]
class GateTDG(Inverse):
r"""Single qubit T-dagger gate (conjugate transpose of the T gate).
**Matrix representation:**
.. math::
\operatorname{T}^\dagger = \begin{pmatrix}
1 & 0 \\
0 & \exp\left(\frac{-i\pi}{4}\right)
\end{pmatrix}
Examples:
>>> from mimiqcircuits import *
>>> GateTDG()
T†
>>> GateTDG().matrix()
[1.0, 0]
[0, 0.707106781186547 - 0.707106781186547*I]
<BLANKLINE>
>>> c = Circuit().push(GateTDG(), 0)
>>> c
1-qubit circuit with 1 instructions:
└── T† @ q[0]
<BLANKLINE>
>>> GateTDG().power(2), GateTDG().inverse()
(T†**2, T)
>>> GateTDG().decompose()
1-qubit circuit with 1 instructions:
└── U(0, 0, (-1/4)*pi, 0.0) @ q[0]
<BLANKLINE>
"""
def __init__(self):
super().__init__(GateT())
[docs]
def isopalias(self):
return True
[docs]
def inverse(self):
return GateT()
def _decompose(self, circ, qubits, bits, zvars):
q = qubits[0]
circ.push(GateU(0, 0, -pi / 4), q)
return circ