Source code for mimiqcircuits.operations.gates.standard.t

#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2023-2025 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from symengine import pi

import mimiqcircuits as mc


[docs] def GateT(): r""" Single qubit T gate. **Matrix representation:** .. math:: \operatorname{T} = \begin{pmatrix} 1 & 0 \\ 0 & \exp\left(\frac{i\pi}{4}\right) \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateT() T >>> GateT().matrix() [1.0, 0] [0, 0.707106781186548 + 0.707106781186548*I] <BLANKLINE> >>> c = Circuit().push(GateT(), 0) >>> c 1-qubit circuit with 1 instructions: └── T @ q[0] <BLANKLINE> >>> GateT().power(2), GateT().inverse() (S, T†) >>> GateT().decompose() 1-qubit circuit with 1 instructions: └── U(0, 0, (1/4)*pi, 0.0) @ q[0] <BLANKLINE> """ return mc.Power(mc.GateS(), 1 / 2)
mc.register_power_alias(mc.GateZ, 1 / 4, "T") @mc.register_power_decomposition(mc.GateZ, 1 / 4) def _decompose_gatet(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(mc.GateU(0, 0, pi / 4), q) return circ
[docs] def GateTDG(): r"""Single qubit T-dagger gate (conjugate transpose of the T gate). **Matrix representation:** .. math:: \operatorname{T}^\dagger = \begin{pmatrix} 1 & 0 \\ 0 & \exp\left(\frac{-i\pi}{4}\right) \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateTDG() T† >>> GateTDG().matrix() [1.0, 0] [0, 0.707106781186547 - 0.707106781186547*I] <BLANKLINE> >>> c = Circuit().push(GateTDG(), 0) >>> c 1-qubit circuit with 1 instructions: └── T† @ q[0] <BLANKLINE> >>> GateTDG().power(2), GateTDG().inverse() ((T†)**2, T) >>> GateTDG().decompose() 1-qubit circuit with 1 instructions: └── U(0, 0, (-1/4)*pi, 0.0) @ q[0] <BLANKLINE> """ return mc.Inverse(GateT())
@mc.register_inverse_decomposition((mc.Power, mc.GateZ, 1 / 4)) def _decompose_gatetdg(gate, circ, qubits, bits, zvars): q = qubits[0] circ.push(mc.GateU(0, 0, -pi / 4), q) return circ