Source code for mimiqcircuits.operations.gates.standard.t

#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from mimiqcircuits.operations.power import Power
from mimiqcircuits.operations.inverse import Inverse
from mimiqcircuits.operations.gates.standard.s import GateS
from mimiqcircuits.operations.gates.standard.u import GateU
from symengine import pi
import mimiqcircuits as mc


[docs] class GateT(Power): r""" Single qubit T gate. **Matrix representation:** .. math:: \operatorname{T} = \begin{pmatrix} 1 & 0 \\ 0 & \exp\left(\frac{i\pi}{4}\right) \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateT() T >>> GateT().matrix() [1.0, 0] [0, 0.707106781186548 + 0.707106781186548*I] <BLANKLINE> >>> c = Circuit().push(GateT(), 0) >>> c 1-qubit circuit with 1 instructions: └── T @ q[0] <BLANKLINE> >>> GateT().power(2), GateT().inverse() (S, T†) >>> GateT().decompose() 1-qubit circuit with 1 instructions: └── U(0, 0, (1/4)*pi, 0.0) @ q[0] <BLANKLINE> """ _name = "T" def __init__(self): super().__init__(GateS(), 1 / 2)
[docs] def isopalias(self): return True
[docs] def inverse(self): return GateTDG()
def _power(self, p): # T^2 * T^2 * T^2 * T^2 = S^2 * S^2 = Z * Z = ID if p % 8 == 0: return mc.GateID() # T^(8n + 1) = T if p % 8 == 1: return GateT() # T^(8n - 1) = T† if p % 8 == 7: return GateTDG() # T^(4n) = Z^n if p % 4 == 0: return mc.GateZ().power(p / 4) # T^(2n) = S^n if p % 2 == 0: return mc.GateS().power(p / 2) return mc.Power(self, p) def __str__(self): return f"{self.name}" def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(GateU(0, 0, pi / 4), q) return circ
[docs] class GateTDG(Inverse): r"""Single qubit T-dagger gate (conjugate transpose of the T gate). **Matrix representation:** .. math:: \operatorname{T}^\dagger = \begin{pmatrix} 1 & 0 \\ 0 & \exp\left(\frac{-i\pi}{4}\right) \end{pmatrix} Examples: >>> from mimiqcircuits import * >>> GateTDG() T† >>> GateTDG().matrix() [1.0, 0] [0, 0.707106781186547 - 0.707106781186547*I] <BLANKLINE> >>> c = Circuit().push(GateTDG(), 0) >>> c 1-qubit circuit with 1 instructions: └── T† @ q[0] <BLANKLINE> >>> GateTDG().power(2), GateTDG().inverse() (T†**2, T) >>> GateTDG().decompose() 1-qubit circuit with 1 instructions: └── U(0, 0, (-1/4)*pi, 0.0) @ q[0] <BLANKLINE> """ def __init__(self): super().__init__(GateT())
[docs] def isopalias(self): return True
[docs] def inverse(self): return GateT()
def _decompose(self, circ, qubits, bits, zvars): q = qubits[0] circ.push(GateU(0, 0, -pi / 4), q) return circ