Source code for mimiqcircuits.operations.operators.diagonals
#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import mimiqcircuits as mc
import symengine as se
[docs]
class DiagonalOp(mc.AbstractOperator):
r"""One-qubit diagonal operator.
The corresponding matrix is given by:
**Matrix Representation**
.. math::
\begin{pmatrix}
a & 0 \\
0 & b
\end{pmatrix}
where `a` and `b` are complex numbers.
See Also:
:class:`Operator`, :class:`Projector0`, :class:`Projector1`
Parameters:
a (complex): The top-left entry of the diagonal matrix.
b (complex): The bottom-right entry of the diagonal matrix.
Examples:
>>> from mimiqcircuits import *
>>> op = DiagonalOp(1, 0.5)
>>> c = Circuit()
>>> c.push(ExpectationValue(DiagonalOp(1, 0.5)), 1, 2)
2-qubit circuit with 1 instructions:
└── ⟨D(1, 0.5)⟩ @ q[1], z[2]
<BLANKLINE>
"""
_name = "D"
_num_qubits = 1
_parnames = ()
_qregsizes = [1]
def __init__(self, a, b):
if not isinstance(a, (float, int)) or not isinstance(b, (float, int)):
raise ValueError("a and b must be float or int")
self.a = a
self.b = b
super().__init__()
self._parnames = ("a", "b")
def _matrix(self):
mat = se.Matrix([[self.a, 0], [0, self.b]])
return mat
def __str__(self):
return f"{self._name}{self.a,self.b}"
@property
def parnames(self):
return self._parnames
[docs]
def rescale(self, scale):
"""Return a new rescaled DiagonalOp operator."""
return DiagonalOp(self.a * scale, self.b * scale)
[docs]
def rescale_inplace(self, scale):
"""In-place rescaling of the DiagonalOp operator."""
self.a *= scale
self.b *= scale
return self
[docs]
def opsquared(self):
"""Return the operator with each parameter squared."""
return DiagonalOp(abs(self.a)**2, abs(self.b)**2)
__all__ = ["DiagonalOp"]