Source code for mimiqcircuits.operations.operators.sigmas
#
# Copyright © 2022-2023 University of Strasbourg. All Rights Reserved.
# Copyright © 2032-2024 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mimiqcircuits import AbstractOperator
import symengine as se
import mimiqcircuits as mc
[docs]
class SigmaMinus(AbstractOperator):
r"""One-qubit operator corresponding to :math:`|0 \rangle\langle 1|`.
**Matrix Representation**
.. math::
\begin{pmatrix}
0 & a\\
0 & 0
\end{pmatrix}
This matrix is parametrized by `a` to allow for phases/rescaling.
The parameter `a` is optional and is set to 1 by default.
See Also:
:class:`SigmaPlus`
Parameters:
a (complex, optional): Scaling factor for the matrix. Defaults to 1.
Examples:
>>> from mimiqcircuits import *
>>> SigmaMinus()
SigmaMinus(1)
>>> SigmaMinus(0.5)
SigmaMinus(0.5)
>>> c = Circuit()
>>> c.push(ExpectationValue(SigmaMinus()), 1, 1)
2-qubit circuit with 1 instructions:
└── ⟨SigmaMinus(1)⟩ @ q[1], z[1]
<BLANKLINE>
"""
_name = "SigmaMinus"
_num_qubits = 1
_parnames = ()
_qregsizes = [1]
def __init__(self, a=1):
self.a = a
super().__init__()
self._parnames = ("a",)
@property
def parnames(self):
return self._parnames
@property
def num_qubits(self):
return self._num_qubits
def _matrix(self):
return se.Matrix([[0, self.a], [0, 0]])
[docs]
def opsquared(self):
return mc.Projector1(abs(self.a) ** 2)
[docs]
def rescale(self, scale):
return SigmaMinus(self.a * scale)
[docs]
def rescale_inplace(self, scale):
self.a *= scale # Modify the original object in-place
return self
def __str__(self):
return f"{self.opname()}({self.a})"
[docs]
class SigmaPlus(AbstractOperator):
r"""One-qubit operator corresponding to :math:`|1 \rangle\langle 0|`.
**Matrix Representation**
.. math::
\begin{pmatrix}
0 & 0\\
a & 0
\end{pmatrix}
This matrix is parametrized by `a` to allow for phases/rescaling.
The parameter `a` is optional and is set to 1 by default.
See Also:
:class:`SigmaMinus`
Parameters:
a (complex, optional): Scaling factor for the matrix. Defaults to 1.
Examples:
>>> from mimiqcircuits import *
>>> SigmaPlus()
SigmaPlus(1)
>>> SigmaPlus(0.5)
SigmaPlus(0.5)
>>> c = Circuit()
>>> c.push(ExpectationValue(SigmaPlus()), 1, 1)
2-qubit circuit with 1 instructions:
└── ⟨SigmaPlus(1)⟩ @ q[1], z[1]
<BLANKLINE>
"""
_name = "SigmaPlus"
_num_qubits = 1
_parnames = ()
_qregsizes = [1]
def __init__(self, a=1):
self.a = a
super().__init__()
self._parnames = ("a",)
@property
def parnames(self):
return self._parnames
@property
def num_qubits(self):
return self._num_qubits
def _matrix(self):
return se.Matrix([[0, 0], [self.a, 0]])
[docs]
def opsquared(self):
return mc.Projector0(abs(self.a) ** 2)
[docs]
def rescale(self, scale):
return SigmaPlus(self.a * scale)
def __str__(self):
return f"{self.opname()}({self.a})"
__all__ = [
"SigmaMinus",
"SigmaPlus",
]