#
# Copyright © 2022-2024 University of Strasbourg. All Rights Reserved.
# Copyright © 2023-2025 QPerfect. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from mimiqcircuits.operations.operation import Operation
from mimiqcircuits.lazy import LazyArg, LazyExpr
[docs]
class Repeat(Operation):
r"""Repeat operation: applies the same operation multiple times.
Repeats a given quantum operation `n` times on the same qubits, bits, and z-variables.
This is useful for constructing repeated sequences of the same gate without manually duplicating it.
Examples:
>>> from mimiqcircuits import *
>>> from symengine import *
>>> Repeat(5, GateX())
∏⁵ X
>>> Repeat(3, GateRX(Symbol("x")))
∏³ RX(x)
>>> Repeat(2, Repeat(3, GateX()))
∏² ∏³ X
>>> Parallel(2, GateH()).repeat()
lazy repeat(?, ⨷ ² H)
>>> Parallel(2, GateH()).repeat()(10)
∏¹⁰ ⨷ ² H
>>> c = Circuit().push(Repeat(2, GateX()), 0)
>>> c
1-qubit circuit with 1 instructions:
└── ∏² X @ q[0]
<BLANKLINE>
>>> Repeat(2, GateX()).decompose()
1-qubit circuit with 2 instructions:
├── X @ q[0]
└── X @ q[0]
<BLANKLINE>
>>> Repeat(3, GateSWAP()).decompose()
2-qubit circuit with 3 instructions:
├── SWAP @ q[0,1]
├── SWAP @ q[0,1]
└── SWAP @ q[0,1]
<BLANKLINE>
.. note::
The `repeat` function is a shorthand that may return other types (e.g., `Power`)
if simplifications apply. It returns a `Repeat` instance only when appropriate.
"""
_name = "Repeat"
def __init__(self, repeats, op):
if not isinstance(repeats, int) or repeats < 0:
raise ValueError(
"Invalid number of repetitions, must be a non-negative integer."
)
if not isinstance(op, Operation):
raise TypeError("Repeat requires a valid Operation to wrap.")
super().__init__()
self.repeats = repeats
self.op = op
self._num_qubits = op.num_qubits
self._num_bits = op.num_bits
self._num_zvars = op.num_zvars
self._num_qregs = op.num_qregs
self._num_cregs = op.num_cregs
self._num_zvars = op.num_zvars
self._qregsizes = op.qregsizes
self._cregsizes = op.cregsizes
self._zregsizes = op.zregsizes
self._parnames = op.parnames
[docs]
def get_operation(self):
return self.op
[docs]
def getparam(self, name):
return self.op.getparam(name)
[docs]
def getparams(self):
return self.op.getparams()
[docs]
def power(self, pow):
return Repeat(self.repeats, self.op.power(pow))
[docs]
def parallel(self, repeat):
return Repeat(self.repeats, self.op.parallel(repeat))
[docs]
def control(self, repeat):
return Repeat(self.repeats, self.op.control(repeat))
[docs]
def inverse(self):
return Repeat(self.repeats, self.op.inverse())
[docs]
def iswrapper(self):
return True
[docs]
def evaluate(self, d):
return Repeat(self.repeats, self.op.evaluate(d))
def _decompose(self, circ, qubits, bits, zvars):
for _ in range(self.repeats):
circ.push(self.op, *qubits, *bits, *zvars)
return circ
def __str__(self):
superscript = "⁰¹²³⁴⁵⁶⁷⁸⁹"
repeat_str = "".join(superscript[int(d)] for d in str(self.repeats))
return f"∏{repeat_str} {self.op}"
[docs]
def copy(self):
return copy.copy(self)
[docs]
def deepcopy(self):
return copy.deepcopy(self)
[docs]
def repeat(*args):
if len(args) == 1:
op = args[0]
return LazyExpr(repeat, LazyArg(), op)
elif len(args) == 2:
num_repeats, op = args
if isinstance(op, LazyExpr):
return LazyExpr(repeat, num_repeats, op)
return Repeat(num_repeats, op)
else:
raise TypeError("repeat expects 1 or 2 arguments")
__all__ = ["Repeat", "repeat"]